Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor.
نویسندگان
چکیده
This study aims to develop a predictive framework to assess the removal and fate of trace organic chemicals (TrOCs) during wastewater treatment by anaerobic membrane bioreactor (AnMBR). The fate of 27 TrOCs in both the liquid and sludge phases during AnMBR treatment was systematically investigated. The results demonstrate a relationship between hydrophobicity and specific molecular features of TrOCs and their removal efficiency. These molecular features include the presence of electron withdrawing groups (EWGs) or donating groups (EDGs), especially those containing nitrogen and sulphur. All seven hydrophobic contaminants were well removed (>70%) by AnMBR treatment. Most hydrophilic TrOCs containing EDGs were also well removed (>70%). In contrast, hydrophilic TrOCs containing EWGs were mostly poorly removed and could accumulate in the sludge phase. The removal of several nitrogen/sulphur bearing TrOCs (e.g., linuron and caffeine) by AnMBR was higher than that by aerobic treatment, possibly due to nitrogen or sulphur reducing bacteria.
منابع مشابه
Treatment of Real Paper-Recycling Wastewater in a Novel Hybrid Airlift Membrane Bioreactor (HAMBR) for Simultaneous Removal of Organic Matter and Nutrients
In this study, a novel integrated Hybrid Airlift Membrane Bioreactor (HAMBR) composed of oxic, anoxic, and anaerobic zones was developed to simultaneously remove organic matter and nitrogen from real paper-recycling wastewater. The removal efficiencies of Chemical Oxygen Demand (COD), ammonium, nitrite, nitrate and Total Nitrogen (TN) for permeate and supernatant were in the range of ...
متن کاملPerformance of Membrane Bioreactor in Removal of Heavy Metals from Industrial Wastewater
Membrane technology is one of the few non-pollutant choices when selecting a treatment process. A membrane with suitable pore size can remove almost all pollutants without using any chemicals. In this research, chromium, zinc and lead were removed from synthetic wastewater by a membrane bioreactor. The results showed that by using a membrane bioreactor, the COD removal efficiency was increased ...
متن کاملThe Study of Organic Removal Efficiency and Membrane Fouling in a Submerged Membrane Bioreactor Treating Vegetable Oil Wastewater
The characterizations of vegetable oil wastewater (VOW) are unpleasant odor, dark color, and high organic contents, including large amounts of oil and grease (O&G), chemical oxygen demand (COD), fatty acids and lipids. Therefore, VOWs should be treated efficiently to avoid the environment pollution. The aim of present study was the investigation of VOW biological treatment using membrane biorea...
متن کاملA novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.
The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds co...
متن کاملEffects of salinity build-up on biomass characteristics and trace organic chemical removal: implications on the development of high retention membrane bioreactors.
This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 189 شماره
صفحات -
تاریخ انتشار 2015